Image for post
Image for post

Minority Report — released in 2002 — predicted the future fairly well, with the usage of self driving cars, touch analytics, personalised ads, video controlled homes, facial/retina recognition, gesture based actions, … and “predictive policing”.

Within Minority Report, law enforcement used “precogs” in order to predict a crime before it happened, and then make an intervention to stop it. This pre-crime approach uses the past to predict future events, and thus identity risks. The machine operates a way that humans would assess rights, such as with one major red flag — such as where someone has just bought a firearm from an on-line site — or with many red flags — such as where someone has been continually posting angry messages about someone. As humans we continually make these judgements about others, and might often say that “we knew that he/she was going to do that from his actions before it”.

Now an Israeli/US company — BriefCam — have developed software which analyses video footage and then create key events, and where police can now take hundreds of CCTV video feeds and distil them down into key frames.

The increasing usage of predicted software in law enforcement worries many people, especially has it can result in false-positives. An example used by the Washington Times defines that:

“…officers raced to a recent 911 call about a man threatening his ex-girlfriend, a police operator in headquarters consulted software that scored the suspect’s potential for violence the way a bank might run a credit report.

The program scoured billions of data points, including arrest reports, property records, commercial databases, deep Web searches and the man’s social- media postings. It calculated his threat level as the highest of three color-coded scores: a bright red warning.

The man had a firearm conviction and gang associations, so out of caution police called a negotiator. The suspect surrendered, and police said the intelligence helped them make the right call — it turned out he had a gun.”

The HunchLab software is used in some states of the US and uses machine learning and predictive analytics to identity high-risk areas within cities. This data includes crime incidents, arrests, and weather data (the hot conditions can often lead to an increase in crime). This data is then added to real-time data from video footage and sensors which are placed around the city.

A major criticism of predictive crime software is that police offices will often be deployed into high risk areas and then end-up arresting more people, which means that the software will keep predicting that that area has a high chance of crime — and this setting the software into a “feedback loop”. For many the solution to this is that the crime rate should be measured against other areas, and will only trigger deployment if the rates are higher than would be expected.

Another major criticism of predictive crime analysis is that poor quality data often leads the amplification of racial biases. For example it is well know than black men are more likely to be stopped over white men, and thus have more data recorded on them. Studies have shown on the Oakland PredPol system that it was twice as likely to target mainly black communities than mainly white ones for illicit drug use, even though medical data showed that there was an equal balance of drug problems across the communities.

Predicting risk

Social care is also increasingly using machine learning to predict the risks to individuals. In the US states and national governments have been using methods which aim to predict whether a mother and father are fit to be parents before the child is even born. The good news is that New York City aims to stop this type of profiling:

Image for post
Image for post

The worst part of this is that the rate of false-positives, within some studies, give 95% (with only a 5% success rate):

Image for post
Image for post

Many overpromise on machine learning, and to allow computers to profile on people’s fitness to be a parent, and completely dehumanises the whole process. If we ever move to this kind of world, we should leave our planet to governments and machines. It will be a world without compassion, and where computers predict our every move. In fact, we just become another computer profile.

Trust in building a new world will evaporate.

Have a read of the article, and make up your own mind [here].

Conclusions

Digital methods can bring new ways to support citizens, and data analytics and machine learning will play a key part of this. The state does need to understand when it oversteps the mark, and where our world becomes the nightmare envisioned by George Orwell.

Sometimes things start with the best of intent, but end-up with poor deliverables. I believe the Name Person’s Act in Scotland is an example of a system which started off with great intent — GIRFEC (Get It Right For Every Child) — but, someone, somewhere, forgot that the child and their families have the rights to know how the risk assessment works. I’ve yet to meet one parent who actually knows how the Named Person’s Act will work in Scotland. An opportunity lost, by the state thinking that it knows best, and operates within a closed environment.

Society needs to debate the usage of predictive analytics, otherwise you could start to see your profile matched to a crime, and be arrested before you even commit the crime.

Written by

Professor of Cryptography. Serial innovator. Believer in fairness, justice & freedom. EU Citizen. Auld Reekie native. Old World Breaker. New World Creator.

Get the Medium app

A button that says 'Download on the App Store', and if clicked it will lead you to the iOS App store
A button that says 'Get it on, Google Play', and if clicked it will lead you to the Google Play store